
 

 
 
 
 

The Geometry of Engine Clusters 
 
 
 
 
 

R

M1/2

M2/2

k
h

s

ϕ
x

 
 
 
 
 
 

  
 Prepared By: J.R. Brohm 
  NAR 78048 
  
 
 Rev 1: June 12, 2005 
 Rev 2: March 30, 2006 

 



Table of Contents 
 
 
Section Page 
 
 
Foreword iii 
 
 
Part I Regular Polygonal Clusters   
 
1.0 Introduction 2 
  
2.0 The 2-Engine Cluster 4 
 
3.0 The 3-Engine Cluster 5 
 
4.0 The 4-Engine Cluster 8 
 
5.0 Generalizing the Formula 9 
 
 
Part II Complex Clusters 
 
1.0 Introduction 17 
 
2.0 Equilateral Clusters 19 
 
3.0 Square Clusters 27 
 
4.0 Rhombic Clusters 30 
 
 
Appendix 1: Regular Polygons 38 

The Geometry of Engine Clusters ii March 30, 2006 



Foreword 
 
 
Engine clusters have always been an exciting facet of model rocketry, and almost all rocketeers 
have built a clustered rocket at one point or another in their modeling career. Invariably, the 
question arises as to the engine combinations that might fit into a particular airframe, and as a 
matter of expediency rocketeers will often resort to empirical methods to answer this question. 
While doing so can be convenient for small diameter rockets, the attempt can become rather 
unwieldy for larger airframes, or for complex cluster arrangements. Given that the cluster 
possibilities are essentially bounded once an airframe is selected, it should be possible to calculate 
the engine sizes/cluster combinations that can fit into the airframe. It was from this consideration 
that this paper was initially prepared. 
 
The original version of this paper examined the geometry of engine clusters arranged in regular 
polygonal layouts (e.g.: triangle, square, pentagon, etc). The analysis found a set of general 
expressions that relate motor mount and cluster size to airframe diameter, permitting the modeler 
to finalize his cluster design well before he must reach for an airframe. Most rocketeers will find the 
results from the original analysis more than adequate for most of their typical clustering needs.  
 
This updated, second revision looks beyond the primary cluster arrangement and considers the 
more complex geometry that occurs when mixed engine types are deployed in the cluster. This 
second revision was inspired by fellow rocketeer Doug Sams, whose excellent empirical work on 
complex cluster layouts can be found at http://home.flash.net/~samily/stuff/Clusters.pdf. 
 
Because of the amount of new material, the paper has now been divided into two parts. Part I 
presents the cluster analysis provided in the original paper, together with a few minor updates; Part 
II presents the new work dealing with the analysis of complex clusters. 
 
The analysis is not intended to be exhaustive; engine cluster combinations are limited only by the 
size of a particular airframe and the modeler’s imagination. Nevertheless, it is hoped that 
rocketeers will find the results of this examination helpful, and a useful input into their designs for 
clustered rockets. 
 
 
 
John Brohm 
 
March 2006 
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1.0 Introduction 
 

One of the interesting and challenging aspects of model rocketry is successfully designing 
and operating clustered motor rockets. The motivation for building a clustered rocket might 
be to emulate a scale prototype, or to increase impulse, or perhaps to just challenge one’s 
self to experiment with a new aspect of the hobby. 
 
Regardless of the reason, once the decision is taken to build a cluster, the modeler must 
immediately decide the cluster arrangement for the airframe of choice. This paper examines 
the geometry associated with engine clusters, and develops a set of relations that can be 
used to determine workable engine cluster and airframe combinations, based on 
commercially available components. 
 

1.1 Definition of Terms 
 

AFD: The minimum inside diameter of an airframe that will just 
accommodate the motor cluster. 

 
CVD: The Central Void, the space formed in the middle between engines 

arranged in a cluster. 
 
MD: The outside diameter of the Motor Mount Tube. 
 
‘n’: The number of sides in an n-sided polygon; also the number of 

engines in a cluster. 
 
Regular Polygon: A closed, 2-dimensional figure possessing sides of equal length and 

interior angles of equal value. 
 
 

 
1.2 Summary of Results 
 

The analysis shows that the following relations hold true for engines arranged in regular 
polygonal clusters: 
 
 
 
Airframe Diameter: Central Void Diameter: 
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Number of Engines, “n”: 
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Where INT = the Integer function; 

 
And  DD MAF >
 
 
 
 
Summarized below are the key parameters for the first few polygonal cluster arrangements: 
 
Table 1: Polygonal Cluster Summary 

 
  

# Of Engines Cluster Arrangement AFD≥ CVD≤ 
2 Pair 2 x MD No Void 
3 Triangle 2.155 x MD 0.155 x MD

4 Square 2.414 x MD 0.414 x MD

5 Pentagon 2.701 x MD 0.701 x MD

6 Hexagon 3 x MD 1 x MD

7 Heptagon 3.305 x MD 1.305 x MD

8 Octagon 3.613 x MD 1.613 x MD
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2.0 The 2-Engine Cluster 
 
An engine cluster is created the instant two or more engines are combined in a non-staged 
configuration. In Figure 1, two motor mount tubes are mounted inside the airframe of a 
rocket, defining the simplest minimum cluster arrangement. 
 
 

R

MD/2r

 
 

Figure 1: 2-Engine Cluster 
 
Each motor mount is defined by its radius r; in this case the two motor mounts are of equal 
diameter, which is the typical case in most simple cluster arrangements. The airframe is 
defined by its radius R, and is represented by the blue line in the diagram. For the ensuing 
discussion we will find it more convenient to speak in terms of the diameter of these 
components, so we define the following relationships: 
 
MD = 2r;  where MD is the outside diameter of the Motor Mount Tube. 
 
AFD = 2R; where AFD is the minimum inside diameter of the airframe the cluster will just fit 

into. 
 
What we would like to find is a formula that relates the minimum inner diameter of the 
airframe to the diameter of the motor mount tubes. Knowing this, we can quickly calculate 
the stock tube combinations that will accommodate the motor combinations we might wish 
to use in the rocket design. 
 
In this particular cluster example, we can readily see that the minimum inside diameter of 
the airframe must be at least equal to or greater than 2MD. And so we have the following 
relationship for the 2 Engine Cluster: 
 

DD MAF 2≥  
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3.0 The 3-Engine Cluster 
 
Clustering three engines of equal diameter creates the shape of an equilateral triangle, the 
vertices of which are located at the center of each engine. Figure 2 illustrates this 
arrangement. 
 
 

MD/2

R

 
 

 
Figure 2: 3-Engine Cluster 

 
We will now focus on the geometry formed by this arrangement. Figure 3 strips away the 
tubes and simply presents the geometry. 
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Figure 3: 3-Engine Cluster Geometry 
 

We readily recognize the key property of an equilateral triangle, the sides being of equal 
length. In this case, the sides are each 2r, where r = the radius of the motor mount tube. 

The Geometry of Engine Clusters 5 March 30, 2006 



 
We will now declare the following definitions. Let: 

 
• 2r = MD. 

 
• R = the minimum inner Airframe Radius, as represented by the blue line in the figure. 

 
• H= the height of the equilateral triangle. 

 
• h = the perpendicular distance from the midpoint of any side to the center of the 

triangle. 
 

• (H-h) = the distance from the center of the triangle to any vertex. 
 

The minimum inner radius of the airframe R needed to accommodate this cluster is equal to 
the distance from the center of the triangle to a vertex, plus an additional distance of r, the 
radius of the motor tube. We’ll express this length as follows: 
 

r)hH(R +−=  
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M
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And since AFD = 2R, then: 
 

( ) DD MhH2AF +−≥  
 
Applying the Pythagorean Theorem to the smaller internal triangle, we can see that: 
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Looking at the larger Right Triangle, we can see that: 
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Substituting this result into the earlier relation for the smaller internal triangle, we get: 
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And thus we find that the airframe must be at least 2.155 times the diameter of the motor 
mount tubes we plan to use for our 3-engine clustered rocket. 
 
Let’s take an example: suppose we want to build a 3-engine cluster using 18 mm motors. 
We know that we’ll have to use BT-20 tubing for the motor mount tubes (outside diameter = 
0.736”), so AFD= 2.155 x 0.736” = 1.586”. If we expect to use a commercially available 
airframe for the rocket, then we know that we’ll have to use a BT-60 (inner diameter = 
1.595”) to accommodate this cluster. This is in fact the case as evidenced, for example, by 
the old Estes Ranger kit, K-6. 
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4.0 The 4-Engine Cluster 
 

This case examines four engines arranged in a square, as shown in Figure 4 below: 
 

R
MD/2

h

 
 

Figure 4: 4-Engine Cluster 
 
 
The Airframe radius is represented by the blue line, R. It is evident that: 
 

2
M

hR D+= ; h being the distance from the airframe center to the vertex of the square. 

 
DD Mh2AF +≥∴  

 
Using the Pythagorean Theorem, we can declare that: 
 

2
D

222 Mh2hh ==+  
 

2

M
h D=∴  

 
Substituting this result into our expression for AFD we get: 
 

D
D
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( ) DDD M414.2M21AF ≅+≥∴  
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5.0 Generalizing the Formula 
 

The foregoing analysis seems like a lot of work when one can just pick up a few tubes and 
dry-fit them together. For example, if all one was interested in was just a 3-engine cluster 
then the math wouldn’t really be necessary. Where the math does help is in those cases 
where we might wish to make a more complex cluster. Also, as we increase the size of the 
cluster arrangement, a central void between the motor mount tubes appears, and we might 
be interested in calculating the maximum motor size that could fit in this center position. 
 
However it is clear that analyzing the more complex cluster arrangements with just the 
Pythagorean Theorem soon renders the process unwieldy. With the aid of some elementary 
trigonometry, the following sections develop a general solution for any n-sided, regular 
polygonal, engine cluster arrangement. 

 
5.1 The General Solution 
 

The assumption is made that the Builder intends to arrange the engines in a regular 
polygonal arrangement. For implementation efficiency we will further assume that the 
engines are all of equal diameter and are just touching each other, which in turn means that 
each engine has its respective center point located at a vertex of the polygon. 
 
Practically speaking, this means that a 4-engine cluster would have the engines arranged in 
a square; a 5-engine cluster would be arranged in a pentagon; a 6-engine cluster would be 
arranged in a hexagon, and so on. What also becomes interesting is the size of the central 
void that appears between the engines. This central void grows as the size of the cluster 
grows, and presents an opportunity to add additional engines to the cluster.  
 
To examine the general case, we must first recall the characteristics of Regular Polygons. 
Regular Polygons are defined as closed figures possessing sides of equal length. It can then 
be shown that the magnitude of each interior angle is directly related to the number of sides, 
as follows: 
 

( )
n

2n180 −°
=∠ ; where n= the number of sides of the Regular Polygon. 

 
 
The proof for this is provided in the Appendix to this paper. 
 
 
Let’s now apply this information to the general problem. Figure 5 illustrates the geometry for 
a complex cluster arranged in an n-sided, regular polygonal layout. For the sake of clarity, 
only a portion of the cluster is shown: 
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Figure 5: Complex Cluster of ‘n’ Engines 
 
 
 
From this figure we can see that the interior angle at any vertex is θ2 . The minimum radius 
of the airframe that will just accommodate this cluster will be equal to the distance from the 
center point to a vertex, plus the radius of the motor mount tube. We can express these 
relationships as follows: 
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From the triangle we find the following relationship: 
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This can be further simplified by taking advantage of the basic trigonometric 
identity . With this, and a bit more algebra, we get: ( θ−°=θ 90sincos )
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This result gives us a simple expression that defines the minimum inside diameter of the 
airframe needed to accommodate a cluster of n engines. 

 
 
5.2 The Central Void 

 
As the size of the cluster is increased, the diameter of the middle space around which the 
engines are arranged also increases. For small clusters of small engines (for example, a 
cluster of three 13 mm engines) this middle space, or Central Void, is very small and not 
that useful. But in larger clusters of larger engines, the Central Void offers a space that could 
be used to include additional engines. We can derive an expression for the Central Void that 
will permit us to calculate the diameter of this space. 
 
Let’s start by illustrating the problem as shown below in Figure 6. In the figure we have a 
large cluster of engines arranged at the vertices of a high order (large ‘n’) polygon. For the 
sake of clarity, most of the motor mount tubes have been removed so we can focus on the 
key parameters. 
 
Let’s define the diameter of the Central Void as CVD. 
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Figure 6: The Central Void 
 
 
From Figure 6 it is readily apparent that the inside diameter of the Airframe is the sum of 
CVD plus two motor mount tubes. This is represented in the figure by the blue line, AFD, and 
can be expressed as follows: 
 
 

DDD CVMAF +≥ 2  
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So it follows that: 
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The following table summarizes the equations to calculate the airframe diameter and the 
size of the Central Void for various cluster sizes. It is evident from the table that the Central 
Void diameter is precisely 2M less than the Airframe diameter, just as the initial expression 
suggested. 
 
Table 1: Polygonal Cluster Summary 

 
  

# Of Engines Cluster Arrangement AFD≥ CVD≤ 
2 Pair 2 x MD No Void 
3 Triangle 2.155 x MD 0.155 x MD

4 Square 2.414 x MD 0.414 x MD

5 Pentagon 2.701 x MD 0.701 x MD

6 Hexagon 3 x MD 1 x MD

7 Heptagon 3.305 x MD 1.305 x MD

8 Octagon 3.613 x MD 1.613 x MD

 
 
 
 
 
 
 
 

 
 
 
Of particular interest in the table is the entry for the hexagonal cluster. There, we can see 
that the Central Void space is precisely the same size as the motor mount tubes used for the 
cluster. This also means that six tubes of identical diameter will fit precisely around a central 
tube of the same diameter. This property of the hexagonal arrangement is well known, as it 
is commonly evidenced in tube-stabilized rockets, such as The Squirrel Works Tuber, and 
others. 
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5.4 Finding ‘n’ 

 
Suppose you have an airframe in hand and simply want to find out how many engines of a 
given size will fit within it? This is easily found by re-arranging the expression for AFD to solve 
for n, as follows: 
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ °

+≥

n
sin

MAF DD 180
1

1  

 

⎟
⎠
⎞

⎜
⎝
⎛ °

+≥

n
sin

M
AF

D

D

180
1

1  

 

⎟
⎠
⎞

⎜
⎝
⎛ °

≥−

n
sin

M
AF

D

D

180
1

1  

 

⎟
⎠
⎞

⎜
⎝
⎛ °

≥
−

n
sin

M
MAF

D

DD

180
1

 

 
Inverting and re-arranging gives: 
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Since ‘n’ represents the number of engines its value has to be an integer, so the calculated 
result has to be rounded down to the nearest whole number for practical applications. We 
express this as follows: 
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5.4 Making Use of the Central Void 

 
We now have the tools at our disposal to readily calculate the engine combinations for a 
complex cluster. The best way to illustrate this is with an example. 
 
Let’s say we wish to build a 4” rocket and we would like to maximize the cluster of engines. 
The airframe we will use is a LOC-3.9 and we wish to use 24 mm engines for the outer ring 
of the cluster. The LOC-3.9 airframe has an ID of 3.90” and we will use the metal foil lined, 
heavy walled 24 mm motor mount tubes from BMS (T50MF) – these have an outside 
diameter of 1.000”. 
 
With these parameters, and using the formula for n, we calculate that the maximum cluster 
that will fit within this airframe is eight 24 mm engines, to be arranged in the shape of an 
octagon. 
 
Using the formula for CVD we calculate that this cluster will have a Central Void of 1.613”. 
This void would accommodate one 38 mm engine (using LOC-1.52 tubing), or if we use the 
equation for n again, we find that either a cluster of 3 BT-20 tubes or 5 BT-5 tubes would 
also fit within that center space. 
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Part II: 
 

Complex Clusters 
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1.0 Introduction 
 

In most applications, modelers will find that a simple polygonal cluster will meet their needs. 
In Part I, a set of general expressions were found that can be used to calculate the size of 
the components needed to realize a particular polygonal cluster, and these results can be 
used to select the right commercial components for the design. 
 
However, a modeler might be interested in experimenting with more complex cluster 
arrangements, or perhaps there might be an interest in determining the maximum number 
of engines (in various combinations) that might fit into a given airframe. This Part II explores 
several of the fundamental complex cluster arrangements with the intention of developing a 
set of basic analytical tools that will aid the modeler in the design of his own complex 
cluster. 

 
1.1 Definition of Terms 
 

AFD: The minimum inside diameter of an airframe that will just 
accommodate the desired motor cluster. 

 
Interference Fit: The term used to denote the condition that occurs when a secondary 

motor mount tube is inserted in the gap that exists between the 
outside of the cluster and the inside of the airframe, the secondary 
motor mount being just tangent to these components. This secondary 
motor mount tube is designated “M2” in this paper. 

 
M1: The outside diameter of Motor Mount Tube 1. 
 
M2: The outside diameter of Motor Mount Tube 2. 
 
‘n’: The number of sides in an n-sided polygon; also the number of 

engines in a cluster. 
 
Regular Polygon: A closed, 2-dimensional figure possessing sides of equal length and 

interior angles of equal value. 
 

1.2 Summary of Results 
 

Equilateral Clusters: 
 
i) Section 2.1: 2-Engine Equilateral Layout 
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ii) Section 2.3: Full Equilateral Layout 
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iii) Section 2.4: 2-Engine Full Equilateral 
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Square Clusters: 
 
i) Section 3.1: Complex Square Cluster 
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2
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 Interference Fit: ( ) 1
1
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Rhombic Clusters: 
 
i) Section 4.1: 2-Engine Rhombus 
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22D MM2MMAF ++≥  

 

 Interference Fit: 
3
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ii) Section 4.3: The Full Rhombus 
 

 ( ) M732.2M31AFD ≅+≥  
 
 
iii) Section 4.4: The 2-Engine Full Rhombus 
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2
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 Interference Fit:  12 M581.0M ≤
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2.0 Equilateral Clusters 
 

In Part I, Section 3.0, the basic 3-engine cluster was examined. In this case, we will 
introduce a second engine, M2, into the space adjacent to the cluster and the inner airframe 
wall, as illustrated in Figure 7, below. 
 
A critical observation we make concerns M2, when its size (diameter) is permitted to grow to 
fit just tangent within the outer cavity in the cluster (refer to Figure 7, below). This tangent 
diameter is defined as the Interference Fit; for a given airframe and main cluster (M1), M2 
must have a diameter just equal to or less than the size of this cavity or otherwise the engine 
will not fit into this space. We will use this tangent case later on to find a definitive 
expression that relates the diameter of M2 to M1. 
 
When M2 is less than or equal to the Interference Fit, the minimum inner airframe diameter, 
AFD, is governed by the equation for the main engine cluster. If this cluster layout is a 
regular polygon, then the relationships found in Part I apply. However, once M2 exceeds the 
Interference Fit diameter, the airframe obviously must expand to accommodate the larger 
mixed motor configuration. The equation for AFD must then take this expanded geometry 
into account. Here, in Part II, the analysis considers the impact caused by introducing a 
second engine into several standard cluster layouts, and develops formulas for finding the 
minimum inner airframe diameter in this event. 

 
2.1 The 2-Engine Equilateral 

 
 
 

R

M2/2

M1/2

H
h

 
 

Figure 7: 2-Engine Equilateral Layout 
 
 
To begin, we declare the following definitions: 
 
• h = the distance from the midpoint of any side of the equilateral triangle to its center. 
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• H = the height of the isosceles triangle (base to center of M2) 

 
• R = Airframe radius, as represented by the blue line. 

 
• AFD = 2R. 

 

From the diagram, we can see that 
2

M
HhR 2++= . 

 
( ) 2D MHh2AF ++≥∴  

 

In Part I, Section 3.0, we found that 
32

M
h 1= ; we’ll re-use that fact here. This just leaves 

finding the expression for H to complete the formula for the airframe diameter. 
 
Considering the isosceles triangle, we see that: 
 

2
21

22
12

2
MM

2
M

H ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
+  

 

21
2
2

2 MM2MH4 +=  
 

( )21
2
2

2 MM2M
4
1

H +=∴  

 

And 21
2
2 MM2M

2
1

H +=  

 

So 221
2
2

1
D MMM2M

2
1

32

M
2AF +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++≥  

 

Or 21
2
2

1
2D MM2M

3
M3

MAF +++≥  

 
This expression gives us the minimum airframe diameter needed to house an equilateral 
cluster layout consisting of any two engine sizes, M1 and M2. 
 

2.2 Interference Fit 
 

In the absence of M2, the minimum airframe diameter will be established by the formula for 
a 3-engine cluster, as found in Part I, Section 3.0: 
 

1D M
3

323
AF ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≥  
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However, when M2 is introduced and its diameter is permitted to grow, then interference 
occurs when M2 becomes tangent to the airframe and the cluster. At this point, we have the 
following equality: 
 

21
2
2

1
21 MM2M

3
M3

MM
3

323
+++=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
 

 
We now solve for M2, thus: 
 

( ) 21
2
2121 MM2M3M3M3M323 +++=+  

 

( ) 21
2
221 MM18M9M3M323 +=−+  

 

( )[ ] 21
2
2

2
21 MM18M9M3M323 +=−+  

 

( ) ( ) 21
2
2

2
221

2
1 MM18M9M9MM3618M3612 +=++−+  

 

( ) ( ) 21 M3636M3612 +=+  
 

( )
( ) 112 M483.0M

36

32
M ≅

+

+
≤∴  

 
The result indicates that M2 must be equal to or less than 0.483M1 if it is to fit in the 
adjacent space in a minimum 3-engine cluster airframe. 
 
For example, if our main engines were 24 mm, the motor mounts would be at least BT-50 
size (0.976”). Using the various equations, we would find that a cluster of three 24 mm 
engines would just fit within a BT-70, but the Interference Fit equation confirms that we 
would not be able to fit a 13 mm motor (BT-5 motor mount, at 0.544” diameter) in the 
adjacent spaces. For this combination (three 24 mm engines and three 13 mm engines) to 
work, we would need to use either a BT-80 or a LOC 2.56 airframe for the rocket. 
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2.3 Full Equilateral Layout 
 
If the diameter of M2 is increased beyond the Interference Fit limits in Figure 7, then the 
diameter of the airframe will need to increase. We now consider the case when M2 reaches 
the same diameter as M1; the cluster configuration begins to take the shape of a 
honeycomb, as illustrated in the following figure: 
 
 

R

M/2

 
 

Figure 8: Full Equilateral Layout 
 
 
Mathematically, we will re-use our findings from Section 2.1, above. Since in this case we 
have set M1 = M2, we can simply set the engine variables in the equation to the same value 
– let’s call this M. 
 

Thus: 22
D M2M

3
M3

MAF +++≥  

 

Or: M309.3M
3

343
AFD ≅⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≥  

 
We can continue to build out the equilateral arrangement, which will of course require 
larger and larger airframes to house the configuration. Mathematically, an arithmetic 
progression begins to reveal itself in the equation for AFD, but we’ll save the analysis of this 
progression for another day. 
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2.4 The 2-Engine Full Equilateral 
 

In this larger equilateral configuration, more space opens up to introduce a second engine 
type into the outer cavities of the airframe, as illustrated in Figure 9 below: 
 
 

R

M1/2

M2/2

k
h

s

ϕ
x

 
 

Figure 9: 2-Engine Full Equilateral 
 
 
We begin this analysis by observing that M2 sits on a radial line (the pink line) that is offset 
from its tangent line (the red line, comprising segments h and k). In each of the previous 
complex cluster examples, these two lines were coincident, a feature that greatly simplified 
the analysis. In this case, the offset complicates the solution for AFD, precipitating a 
quadratic that must be solved to find the Interference Fit. Later in section 4.4, we will see the 
same effect occur in the solution for the complex rhombic layout. 
 
Accordingly, we declare the following definitions: 
 
• h = the distance from the midpoint of the equilateral triangle to a side; we recall from 

Part I, Section 3.0, that 
32

M
h 1=  for an equilateral. 
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• k = the height of the isosceles triangle. From Part II, Section 2.1, we recall that 

21
2
2 MM2M

2
1

k +=  

 
• Q = h + k, represented in the figure by the red line. 

 
• x = the distance from the center of the cluster to the lower end of Q. It is evident from 

the figure that 
3

M
h2x 1==  

 
• s = the distance from the center of the airframe to the center of M2. 

 
• ϕ = 120°. This is evident, as ϕ is the angle formed by the side bisectors that converge 

in the middle of the equilateral triangle. 
 

• AFD = 2R, and is represented by the blue line in the diagram. 
 
 

With the Law of Cosines, we can establish the following equality: 
 

( )°−+= 120cosxQ2Qxs 222  
 

But ( )
2
1

120cos −=°  

 
xQQxs 222 ++=∴  

 
Now  khQ +=
 

⎥⎦
⎤

⎢⎣
⎡ ++=++=∴ 21

2
2121

2
2

1 MM6M3M
32

1
MM2M

2
1

32

M
Q  

 
Processing the components for s2, we get: 
 

4
M

2
MM

MM6M3
3

M
12
M7

s
2
221

21
2
2

1
2
12 ++++=  

 

⎥⎦
⎤

⎢⎣
⎡ ++++= 2

22121
2
21

2
1

2 M3MM6MM6M3M4M7
12
1

s  

 
 
And with some final factoring we get: 
 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞⎜

⎝
⎛ +++=

2

21
2
21

2
1

2 MM6M3M2M3
12
1

s  
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Taking the square root gives us s: 
 

2

21
2
21

2
1 MM6M3M2M3

32

1
s ⎟

⎠
⎞⎜

⎝
⎛ +++=  

 
2

21
2
21

2
1 MM6M3M2

3
1

M
2
1

s ⎟
⎠
⎞⎜

⎝
⎛ +++=∴  

 
This result now permits us to find AFD. Observing the pink line in the figure, it is evident 
that ; 2D Ms2AF +=
 

2

21
2
21

2
12D MM6M3M2

3
1

MMAF ⎟
⎠
⎞⎜

⎝
⎛ ++++≥∴  

 
 

2.5 Interference Fit: 
 
Section 2.3 found the minimum airframe diameter for a full equilateral cluster to be 
 

M
3

343
AFD ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
≥  

 
Interference occurs when a second engine, M2, is introduced into the adjacent spaces and 
its diameter is tangent with the primary engines and the inner airframe wall. Doing so here 
creates the following equality: 
 

( ) 2

21
2
21

2
12

1 MM6M3M2
3
1

MM
3

M343
⎟
⎠
⎞⎜

⎝
⎛ ++++=

+
 

 
 

2

21
2
21

2
1

2

21 MM6M3M2
3
1

MMM
3

343
⎟
⎠
⎞⎜

⎝
⎛ +++=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ +
 

 
Expanding the relation we get: 
 
( ) ( ) 2

22121
2
21

2
1

2
221

2
1 M3MM6MM6M3M4M7M3MM386M

3
32457

++++=++−
+

 

 

( ) ( ) 21
2
121

2
21 MM32436M32436MM6M3M12 +−+=+  

 
Dividing by , we get: 1M12
 

( )( )2121
2
2 MM323MM6M3 −+=+  
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Squaring and then dividing by 3 gives us: 
 

( ) ( ) ( ) 2
221

2
121

2
2 M347MM3814M347MM2M +++−+=+  

 
This leaves us with a quadratic to solve for M2 as follows: 
 

( ) ( ) ( ) 0M347MM3816M346 2
121

2
2 =+++−+  

 
 
The roots are: 
 

( ) ( )
( )346

M31222M348
M

2
11

2
+

+±+
=  

 
 

Or 
928.12

M541.6M928.14
M 11

2
±

≅  

 
 

( ) 12 M506.0155.1M ±=∴  
 
Since M2 must be less than M1 at the Interference Fit point, we must take the smaller root.  
 
Therefore  12 M649.0M ≤
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3.0 Square Clusters 
 
3.1 Complex Square Cluster 

 
In Part I, Section 4.0, the 4-engine cluster was examined. In this example, a second engine, 
M2, is introduced into the cluster. Figure 9 illustrates this configuration: 
 
 
 

R
M1/2

h

M2/2

k

x

 
 

Figure 10: Complex Square Cluster 
 
 
We declare the following definitions: 
 

• h = 
2

M1 , as found in Part I, Section 4.0. 

 
• k = the distance from the center of the square to the midpoint of any side. 

 
• x = the height of the isosceles triangle. 

 
• R = the radius of the airframe, as equally represented by the blue and pink lines. 

 
 
Examining the pink line, we see that: 
 

2
M

xkR 2++=  
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But AFD = 2R 
 
So  ( ) 2D Mxk2AF ++=
 
From the diagram we can see that: 
 

2
1

2
12

2

M
2

M
k ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

 

So 
4

M
4

M
2

M
k

2
1

2
1

2
12 =−=  

 

2
M

k 1=∴  

 
We can also see that: 
 

2
21

2
12

2
MM

2
M

x ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

 

21
2
2

2 MM2Mx4 +=  
 

21
2
2 MM2M

2
1

x +=∴  

 
Substituting these expressions for k and x into the equation for AFD, we get: 
 

21
2
221D MM2MMMAF +++≥  

 
3.2 Interference Fit 

 
Interference occurs when M2 is just tangent to the cluster and the airframe wall. In this event 
we have the following equality: 
 

( ) 21
2
2211 MM2MMMM21 +++=+  

 

21
2
221 MM2MMM2 +=−  

 

( ) 21
2
2

2
21 MM2MMM2 +=−  

 

221 MM2M =−  
 

( ) 1
1

2 M414.0
21

M
M ≅

+
≤∴  
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Of interest in this case is the fact that the Interference Fit size for M2 is the same size as the 
Central Void; see the entry for a Square in Table 1, Part 1, Section 5.2. 
 

3.3 Setting M2 to M1 
 

Referring to Figure 10, if the diameter for M2 is permitted to grow to the same size as M1, 
we arrive at an eight-engine cluster, similar to the engine layout found in the Saturn 1b 
(although the four outer engines in the Saturn 1b are not tangent to the inner four). 
 
In this case, we can re-use the equation for AFD from Section 3.1 and set M1 = M2 = M. 
Accordingly, the equation reduces as follows: 
 

22
D M2MM2AF ++≥  

 

( )M32AFD +=∴  
 
 
For example, if M was selected to be a BT-5, then an eight-engine cluster of this 
configuration would fit just nicely inside a BT-70. 
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4.0 Rhombic Clusters 
 
4.1 The 2-Engine Rhombic Cluster 

 
Back in Part 1, Section 2.0, we examined the very simple 2-engine cluster. It was readily 
apparent in that simple example that the minimum airframe diameter for this cluster 
is . The following figure now introduces a second engine, M1D M2AF ≥ 2, into the empty 
space adjacent to the cluster. 
 
 

R

M1/2

M2/2

h

 
 

Figure 11: 2-Engine Rhombic Cluster 
 
 
To begin, we declare the following definitions: 
 
• The minimum airframe radius accommodating this cluster is R, as represented by the 

blue line in the diagram. Therefore the minimum airframe diameter is given 
by . R2AFD =

 
• h = the height of the isosceles triangle formed by the vertices of M1 and M2. 

 
 
From the diagram, it can be seen that: 
 

2
M

hR 2+= ;  

 
2D Mh2AF +≥∴  

 

But 
2

21
2

12

2
MM

2
M

h ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  
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So  2

221
2
1

2
1

2 MMM2MMh4 ++=+
 

( )21
2
2

2 MM2M
4
1

h +=∴  

 

And 21
2
2 MM2M

2
1

h +=  

 
Substituting this result into our expression for AFD, we get: 
 

21
2
22D MM2MMAF ++≥  

 
This expression finds the minimum airframe diameter needed to accommodate a rhombic 
cluster comprised of two known engine diameters.  
 

4.2 Finding the Interference Fit for M2

 
Interference occurs when M2 is just tangent to the cluster and the inner airframe wall. Thus 
we have the following equality: 
 

21
2
221 MM2MMM2 ++=  

 

( ) 21
2
2

2
21 MM2MMM2 +=−  

 

21
2
2

2
221

2
1 MM2MMMM4M4 +=+−  

 

21
2
1 MM6M4 =  

 
21 M3M2 =  

 

3
M2

M 1
2 ≤∴  

 
Let’s take an example: let’s say that we wish to build a 2-engine cluster using 24 mm 
engines. This means that the motor mount tubes must be at least BT-50 size and therefore 
AFD must be greater than 2 x 0.976” = 1.952”. The closest commercial airframe would be 
ST-20, with an ID = 2.00”. 
 
We might imagine that an 18 mm engine could fit in the adjacent cavities, creating a 4-
engine rhombic cluster. Using the airframe diameter formula for this configuration, we find 
that AFD must be at least 2.143”, clearly indicating this dual engine configuration will not fit 
in the ST-20 (although it would fit in a BT-70). 
 
Knowing that if the main motor mount tubes are 0.976” and that this pair just fits inside the 
ST-20, we can use the Interference Fit expression to find M2. This gives us an M2 less than 
0.651”, also making it clear that a rhombic cluster of two 24 mm engines and two 18 mm 
engines will not fit inside the ST-20. With a pair of 24 mm engines as the main cluster, we 
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must settle for two 13 mm secondary engines if we are to use an ST-20 airframe. Bumping 
the airframe up to a BT-70 enables the 24 mm/18 mm combination. 
 
Alternatively, if the main engine pair consists of two 29 mm engines (LOC 29 mm motor 
mount tubes), then we find that this combination will fit in either a BT-80 or LOC 2.56 
airframe, and that the largest secondary engines will be 18 mm (BT-20 motor mount tubes). 
 

4.3 The Full Rhombus 
 
If the diameter of M2 is permitted to grow to the same size as M1, we arrive at a full 
rhombus configuration. The following figure illustrates this arrangement: 
 

M

M

R

r

h

 
 

Figure 12: Full Rhombus Cluster 
 
 
We declare the following definitions: 
 
• h = the distance from the center of the airframe to the center of the outer engine (i.e.: 

the height of the equilateral triangle in the figure). 
 

• R = the radius of the airframe, as represented by the blue line. 
 
From the diagram we can see that: 
 

2
M

hR +=  
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But  R2AFD =
 

Mh2AFD +≥∴  
 

We recall that for equilateral triangles 
2
M3

h =  

 

( ) M732.2M31AFD ≅+≥∴  
 
Note that we arrive at exactly the same result by setting M2 = M1 = M in the expression for 
AFD found in Section 4.1. 
 
 

4.4 The 2-Engine Full Rhombus 
 

If we introduce a second engine into this arrangement, we arrive at the following 
configuration: 
 
 

 

M1/2

R

r

h

M2/2

s

x

Q/2

k

 
 

Figure 13: 2-Engine Full Rhombus 
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We begin this analysis by declaring the following definitions: 
 

• h = the height of the internal equilateral triangle. Here, 
2
M3

h 1= . 

 
• k = the height of the isosceles triangle formed by the radial components of M1 and M2. 

 
• Q = h + k, and represents the distance along the tangent line from the base vertex of 

the equilateral triangle to the center of M2. 
 

• 
2

M
r 1= , the radius of M1. 

 
• s = the distance along the radial line from the center of the configuration to the center 

point of M2. 
 

• R = the minimum radius of the airframe and is represented by the blue line. As usual, 

AFD = 2R. As shown in Part II, Section 4.3, ( ) 1D M31AF +=  so long as M2<M1. This 
result will be used to formulate the Interference Fit. 

 
• x = the remaining segment necessary to complete the larger right triangle formed by 

the centers of the central M1 motor mount tubes and the center of M2. It will be shown 
that this right triangle is half of an equilateral, and this fact will be central to the 
analysis. 

 
 

To find the minimum airframe diameter that will accommodate both M1 and M2 in this 
mixed configuration, we will need to characterize a radial line that passes through these two 
motor mounts. The pink line does this, and one can readily see that: 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≥

2
M

s2AF 2
D  

 
 

2D Ms2AF +≥∴  
 
We now need to find an expression for s involving both M1 and M2. To do this, we will need 
to characterize the segments that comprise the right triangle. Thus: 
 

2
M3

h 1=  

 
And we can see that: 
 

2
21

2
12

2
MM

2
M

k ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+  

 
 

21
2
2

2 MM2Mk4 +=∴  
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21
2
2 MM2M

2
1

k +=∴  

 
Now ; khQ +=
 

⎟
⎠
⎞⎜

⎝
⎛ ++=++=∴ 21

2
2121

2
2

1 MM2MM3
2
1

MM2M
2
1

2
M3

Q  

 
Inspecting the diagram, it becomes apparent that Q is a line that bisects the lower left vertex 
of the equilateral triangle and is the hypotenuse of the larger right triangle. This means the 
larger right triangle must be half of a large equilateral, whose height is xr2 + . We 
therefore can declare the following: 
 

2
Q3

xMxr2 1 =+=+  

 
 

121
2
211 MMM2MM3

4
3

M
2
Q3

x −⎟
⎠
⎞⎜

⎝
⎛ ++=−=∴  

 
 

21
2
21

1 MM6M3
4
1

M
4
M3

x ++−=∴  

 
 

⎟
⎠
⎞⎜

⎝
⎛ −+=∴ 121

2
2 MMM6M3

4
1

x  

 
Thus, we can now characterize the segment (r+x): 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ++=++−=+ 21

2
2121

2
2

11 MM6M3M
4
1

MM6M3
4

M
2

M
xr  

 
We have now characterized the necessary components to solve for s: 
 

( ) ( )
4

Q
xr

2
Q

xrs
2

2
2

22 ++=⎟
⎠
⎞

⎜
⎝
⎛++=  

 
Processing the components, we get: 
 

( ) ⎟
⎠
⎞⎜

⎝
⎛ ++++=+ 21

2
221

2
21

2
1

2 MM6M3MM6M3M2M
16
1

xr  

 
 

2

21
2
21

2

MM2MM3
16
1

4
Q

⎟
⎠
⎞⎜

⎝
⎛ ++=  
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⎟
⎠
⎞⎜

⎝
⎛ ++++=∴ 21

2
221

2
21

2
1

2

MM2MMM6M3M2M3
16
1

4
Q

 

 
Adding, we get: 
 

⎟
⎠
⎞⎜

⎝
⎛ ++++= 21

2
221

2
21

2
1

2 MM8M4MM6M3M4M4
16
1

s  

 
 

⎟
⎠
⎞⎜

⎝
⎛ ++++=∴ 21

2
21

2
221

2
1

2 MM6M3MMMM2M
4
1

s  

 
 

And ( ) 21
2
21

2
21 MM6M3MMM

2
1

s +++=  

 
Finally: 
 

( ) 21
2
21

2
212D MM6M3MMMMAF ++++≥  

 
4.5 Interference Fit 

 
Interference occurs with the following equality: 
 

( ) ( ) 21
2
21

2
2121 MM6M3MMMMM31 ++++=+  

 
Re-arranging, we get: 
 

( )[ ] ( ) 21
2
21

2
21

2
21 MM6M3MMMMM31 +++=−+  

 
 

( ) ( ) 21
2
21

2
221

2
1

2
221

2
1 MM6M3MMMM2MMMM322M324 ++++=++−+  

 
 

( ) ( ) 2121
2
2 M324M323MM6M3 +−+=+  

 
 

( ) ( )[ ]22121
2
2 M324M323MM6M3 +−+=+  

 
 

( ) ( ) ( ) 2
221

2
121

2
2 M31628MM32848M31221MM6M3 +++−+=+  

 
Grouping terms, we arrive at a quadratic which must be solved for M2: 
 

( ) ( ) ( ) 0M31221MM32854M31625 2
121

2
2 =+++−+  
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( ) ( ) ( )( )
( )316252

M31221316254M32854M32854
M

2
1

2
1

2
1

2
+

++−+±+
=  

 
 

( ) ( )
( )31625

M330542M31427
M 11

2
+

+±+
=  

 
 

( ) 12 M391.0972.0M ±=∴  
 
Since M2 is less than M1 at the Interference Fit point, we have: 
 

12 M581.0M ≤  
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Appendix 1: Regular Polygons 
 
 
As discussed in Part I, Section 5.1, a critical parameter in the analysis is the relationship that 
exists between the number of sides in a regular polygon and the sum of its interior angles. 
The following provides a proof for the fact that the sum of the interior angles for an n-sided 
polygon is equal to . ( )2n180 −°
 
Figure A1 illustrates an n-sided polygon with center point A and vertices V1 to Vn. 
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Figure A1: An N-Sided Regular Polygon 
 
 
We can readily see that for every side there is an internal triangle associated with it, 
comprised of an external polygon side and the dashed lines connecting the end points of 
the side (vertices) to the center point A. It is evident that an n-sided polygon has n internal 
triangles. 
 
We know that the sum of the internal angles in each of the triangles is 180˚. Therefore the 
sum of all the angles in the n triangles is °⋅180n . 
 
To find the sum of just the interior angles of the polygon (the angles formed at the vertices), 
we need to add up all the angles at the vertices. We can get this value from the sum of the 
angles in the n triangles, but using this sum requires us to subtract out the angles formed at 
the apex of each triangle, located at the center point A. This can be easily done because we 
know that the sum of all the triangle apex angles is 360˚. We know this because all of these 
apex angles are encompassed in one revolution around the polygon. 
 
Let’s then define the sum of the interior angles of the Polygon as . ∠I
 
Therefore ( )2n180360180nI −°=°−°⋅=∠  
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A distinguishing feature of Regular Polygons is the fact that all of the interior angles are 
equal in magnitude. Therefore we can easily find an expression that defines this value by 
dividing the sum of the interior angles by the number of angles as follows: 
 

( )
n

2n180
n
I

V
−°

==∠ ∠  

 
As we observed in Part 1, Section 5.1, we’re interested in half the value of the vertex angle, 
which we defined as θ . 
 

So 
( ) ( )

n
2n90

n2
2n180 −°

=
−°

=θ  

 
 
Table A1 below summarizes the key characteristics for the first few Regular Polygons: 
 
 
Table A1: Regular Polygon Characteristics 

 
 
 
 

 
 
 
 
 
 
  

Polygon # of Sides Sum of Interior 
Angles 

Magnitude of 
Interior Angle 

Triangle 3 180° 60 
Square 4 360 90 
Pentagon 5 540 108 
Hexagon 6 720 120 
Heptagon 7 900 128.57 
Octagon 8 1080 135 
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