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1.0 Introduction 
 

When designing model rockets, designers often choose to incorporate different 
diameter body tubes into the models’ design. Sometimes this is done to 
accommodate special features, such as payload or camera bays, but often it is 
done just to make the design more interesting and appealing. Component 
manufacturers usually offer standard transition parts that permit standard body 
tubes of different diameters to be mated, resolving the problem simply and 
conveniently. But designers and builders are usually left to their own devices 
when the mating problem involves body tube diameters that are not supported 
by the manufacturers, or perhaps require a non-standard transition length. 
Fortunately, the problem of the non-standard transition can be solved with a little 
geometry, and this paper presents some solutions. 
 

1.1 Background 
 
Geometrically, body tube transitions are a physical derivative of a cone. If one 
can imagine a cone that has some portion of its’ top cut off, then the remainder 
of the cone would represent a transition body, gradually reducing in diameter 
from its’ base to the point where the top of the cone was cut off, as shown in 
Figure 1, below:  
 
 

L

r2r1

 
 

Figure 1: Transition Body 
 
This transition body can be used to mate two different body tubes of a model 
rocket when the diameters of the base and top of the transition match the 
diameters of the two body tubes. The sharpness or steepness of the transition is 
proportional to the length L of the transition: the longer the length of the transition 
the more gradual the reduction in diameter. 
 
Once the diameters of the body tubes that are to be mated are known, and the 
desired length of the transition is decided, it should be possible to create a solid 
transition out of a lightweight material such as balsa. Creating a solid transition is 
relatively straightforward if access to the right tools is available or if one is willing 
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to spend the money to have one made by a component manufacturer, e.g.: 
BMS. But most often, a solid part isn’t necessary. The most common practice is to 
create a transition shroud, which when constructed, has the same shape and 
serves the same purpose as the solid transition but is nothing more than a 
conically-derived covering of the junction between the two coupled body tubes. 
 
The next section defines and explains the geometry behind transition shrouds and 
then derives the basic equations necessary to calculate the parameters of the 
part. 
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2.0 Transition Shrouds 

 
2.1 Transition Shroud Geometry 
 

Taking the decision to make a transition shroud means that the builder has 
designed some other direct means to solidly couple the two body tubes. This is 
usually achieved with some sort of coupling tube/centering ring arrangement. 
The main point is that the builder is not relying on the transition shroud to provide 
strength to the airframe: instead, the transition shroud is being used to fair the joint 
between the two dissimilar tubes and will only be strong enough to protect itself. 
Usually, the shroud is made from paper or card stock (or even light gauge plastic 
sheet or fiberglass) depending on the size of the model. Sometimes underlying 
reinforcement ribs made of balsa are installed to support and further strengthen 
the shroud. 
 
The first step involved in creating a transition shroud consists of defining the 
dimensions the shroud will require. These values are then plugged into a set of 
relations that define the layout dimensions of the shroud. But before we do this, 
we must first establish the relationship that exists between the shroud’s three-
dimensional shape and its plan-form layout. It is the plan-form layout that we must 
determine in order to fashion it correctly from an essentially two-dimensional 
material such as paper, cardboard or plastic cardstock. 
 
Let’s revisit the geometric properties of the transition: 
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Figure 2: Transition Side View 

 
 

In Figure 2, the transition is shown in the side view. In this shape the transition 
shroud is defined by: 
 
• L, the length of the transition, 
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• r1, the radius of the front of the transition, 
 
• r2, the radius of the rear of the transition. 

 
These dimensions are known to the designer, as the body tube diameters and the 
desired length of the transition are parameters that the designer specifies for the 
rocket design. 

 
It is also apparent that r1 and r2 correspond to the radii of the smaller and larger 
body tubes respectively. By using the Pythagorean Theorem, the shroud length 

can be defined as ( ) 22
12 Lrr +− . 

 
If one were to take a pair of scissors and cut along the axis of the shroud, the 
transition could be laid flat on a table. In doing so, the shroud would assume the 
shape of a disc sector, as shown in Figure 3 below: 
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Figure 3: The Transition Shroud in Plan Form. 
 

 
The physical characteristics of the sector are defined by: 
 
• R1, the radius of the inner circle, 

 
• R2, the radius of the outer circle, 

 
• Θ˚, the sector length in degrees. 

 
These are the dimensional properties that must be computed in order to correctly 
fabricate the shroud. 
 

2.2 Solving for R1 and R2
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Let’s take a closer look at these properties. 
 
The arc lengths of the sector can be defined as: 
 
• S1 = ΘrR1, with  Θ expressed in radians. 
 
• S2 = ΘrR2 

 
 

Since Θ is common to both arc lengths, 
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Because the sector is directly derived from the shroud, it follows that the plan form 
properties are directly related to the transition shroud properties. We can begin to 
define some of these relationships as follows: 
 
• S1 = 2πr1 and  S2 = 2πr2  
 

(By definition, the arc lengths must be equal to the circumferences of the 
respective ends of the transition). 
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By comparing the diagrams in Figures 2 and 3, it can be seen that the shroud 
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Substituting the above for gives: 2R
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2.3 Solving for Θ 
 

 
Recall that: 
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2.4 Shroud Dimensions Expressed in Body Tube Diameters 
 

The foregoing results provide a complete solution for the dimensional properties 
of a transition shroud. However, the expressions are based on body tube radius 
and this creates an extra calculation step, and margin for error, when one uses 
the relations to calculate the dimensions of a shroud. This is so because 
manufacturers generally express the dimensions of body tubes in terms of 
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diameter, not radius. With a bit more algebra, we can re-express the equations in 
terms of body tube diameter. 
 

To begin, we know that 
2
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where d1 is the diameter of the smaller body tube and d2 is the diameter of the 
larger body tube. 
 
Substituting these variables into the solution for R1 gives: 
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Solving for the other parameters gives: 
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3.0 Summary 
 

This paper demonstrates how transition shrouds can be derived from the 
properties of cones and provides a set of formulae for calculating their 
dimensional properties. 
 
Expressed in terms of body tube radius, the dimensions of a transition shroud are 
specified by: 
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Expressed in terms of body tube diameter, the dimensions of a transition shroud 
are specified by: 
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